Math 221: LINEAR ALGEBRA

Chapter 3. Determinants and Diagonalization §3-3. Diagonalization and Eigenvalues

Le Chen¹

Emory University, 2021 Spring

(last updated on 02/22/2021)

Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Diagonalization

Linear Dynamical Systems

Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Diagonalization

Linear Dynamical Systems

Example

Let
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
. Find A^{100} .

How can we do this efficiently?

Consider the matrix $P = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$. Observe that P is invertible (why?), and that

$$\mathbf{P}^{-1} = \frac{1}{3} \left[\begin{array}{cc} 1 & 2\\ -1 & 1 \end{array} \right].$$

Furthermore,

$$P^{-1}AP = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} = D,$$

where D is a diagonal matrix.

Example (continued)

This is significant, because

$$\begin{array}{rcl} {\bf P}^{-1}{\bf A}{\bf P} &= {\bf D} \\ {\bf P}({\bf P}^{-1}{\bf A}{\bf P}){\bf P}^{-1} &= {\bf P}{\bf D}{\bf P}^{-1} \\ ({\bf P}{\bf P}^{-1}){\bf A}({\bf P}{\bf P}^{-1}) &= {\bf P}{\bf D}{\bf P}^{-1} \\ {\bf I}{\bf A} &= {\bf P}{\bf D}{\bf P}^{-1} , \end{array}$$

and so

$$\begin{aligned} A^{100} &= (PDP^{-1})^{100} \\ &= (PDP^{-1})(PDP^{-1})(PDP^{-1})\cdots(PDP^{-1}) \\ &= PD(P^{-1}P)D(P^{-1}P)D(P^{-1}\cdots P)DP^{-1} \\ &= PDIDIDI \cdots IDP^{-1} \\ &= PD^{100}P^{-1}. \end{aligned}$$

Example (continued)

Now,

$$\mathbf{D}^{100} = \left[\begin{array}{cc} 2 & 0\\ 0 & 5 \end{array} \right]^{100} = \left[\begin{array}{cc} 2^{100} & 0\\ 0 & 5^{100} \end{array} \right].$$

Therefore,

$$\begin{aligned} \mathbf{A}^{100} &= \mathbf{P}\mathbf{D}^{100}\mathbf{P}^{-1} \\ &= \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{100} & 0 \\ 0 & 5^{100} \end{bmatrix} \begin{pmatrix} \frac{1}{3} \end{pmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 2^{100} + 2 \cdot 5^{100} & 2^{100} - 2 \cdot 5^{100} \\ 2^{100} - 5^{100} & 2 \cdot 2^{100} + 5^{100} \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 2^{100} + 2 \cdot 5^{100} & 2^{100} - 2 \cdot 5^{100} \\ 2^{100} - 5^{100} & 2^{101} + 5^{100} \end{bmatrix}. \end{aligned}$$

Theorem (Diagonalization and Matrix Powers) If $A = PDP^{-1}$, then $A^k = PD^kP^{-1}$ for each k = 1, 2, 3, ...

The process of finding an invertible matrix P and a diagonal matrix D so that $A = PDP^{-1}$ is referred to as diagonalizing the matrix A, and P is called the diagonalizing matrix for A.

Problem

- ▶ When is it possible to diagonalize a matrix?
- ▶ How do we find a diagonalizing matrix?

Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Diagonalization

Linear Dynamical Systems

Eigenvalues and Eigenvectors

Definition

Let A be an $n \times n$ matrix, λ a real number, and $\vec{x} \neq \vec{0}$ an n-vector. If $A\vec{x} = \lambda \vec{x}$, then λ is an eigenvalue of A, and \vec{x} is an eigenvector of A corresponding to λ , or a λ -eigenvector.

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 and $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Then
 $A\vec{x} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3\vec{x}.$

This means that 3 is an eigenvalue of A, and $\begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector of A corresponding to 3 (or a 3-eigenvector of A).

Suppose that A is an $n \times n$ matrix, $\vec{x} \neq 0$ an n-vector, $\lambda \in \mathbb{R}$, and that $A\vec{x} = \lambda \vec{x}$.

Then

$$\begin{aligned} \lambda \vec{x} - A \vec{x} &= \vec{0} \\ \lambda I \vec{x} - A \vec{x} &= \vec{0} \\ (\lambda I - A) \vec{x} &= \vec{0} \end{aligned}$$

Since $\vec{x} \neq \vec{0},$ the matrix $\lambda I - A$ has no inverse, and thus

 $\det(\lambda I - A) = 0.$

Definition

The characteristic polynomial of an $n \times n$ matrix A is

 $c_A(x) = \det(xI - A).$

Example

The characteristic polynomial of $A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$ is

$$\begin{array}{rcl} c_A(x) & = & \det\left(\left[\begin{array}{cc} x & 0 \\ 0 & x \end{array}\right] - \left[\begin{array}{cc} 4 & -2 \\ -1 & 3 \end{array}\right]\right) \\ & = & \det\left[\begin{array}{cc} x-4 & 2 \\ 1 & x-3 \end{array}\right] \\ & = & (x-4)(x-3)-2 \\ & = & x^2-7x+10 \end{array}$$

Theorem (Eigenvalues and Eigenvectors of a Matrix)

Let A be an $n \times n$ matrix.

- 1. The eigenvalues of A are the roots of $c_A(x)$.
- 2. The λ -eigenvectors \vec{x} are the nontrivial solutions to $(\lambda I A)\vec{x} = \vec{0}$.

Example (continued)

For
$$A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
, we have
 $c_A(x) = x^2 - 7x + 10 = (x - 2)(x - 5).$

so A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 5$.

To find the 2-eigenvectors of A, solve $(2I - A)\vec{x} = \vec{0}$:

$$\left[\begin{array}{cc|c} -2 & 2 & 0 \\ 1 & -1 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & -1 & 0 \\ -2 & 2 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

Example (continued)

The general solution, in parametric form, is

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} = \mathbf{t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 where $\mathbf{t} \in \mathbb{R}$.

To find the 5-eigenvectors of A, solve $(5I - A)\vec{x} = \vec{0}$:

$$\left[\begin{array}{cc|c} 1 & 2 & 0 \\ 1 & 2 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

The general solution, in parametric form, is

$$\vec{x} = \begin{bmatrix} -2s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
 where $s \in \mathbb{R}$

Definition

A basic eigenvector of an $n \times n$ matrix A is any nonzero multiple of a basic solution to $(\lambda I - A)\vec{x} = \vec{0}$, where λ is an eigenvalue of A.

Example (continued)

 $\begin{bmatrix} 1\\1 \end{bmatrix} \text{ and } \begin{bmatrix} -2\\1 \end{bmatrix} \text{ are basic eigenvectors of the matrix}$ $\mathbf{A} = \begin{bmatrix} 4 & -2\\-1 & 3 \end{bmatrix}$

corresponding to eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 5$, respectively.

Problem

For $A = \begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$, find $c_A(x)$, the eigenvalues of A, and the corresponding basic eigenvectors.

Solution

$$det(xI - A) = \begin{vmatrix} x - 3 & 4 & -2 \\ -1 & x + 2 & -2 \\ -1 & 5 & x - 5 \end{vmatrix} = \begin{vmatrix} x - 3 & 4 & -2 \\ 0 & x - 3 & -x + 3 \\ -1 & 5 & x - 5 \end{vmatrix}$$
$$= \begin{vmatrix} x - 3 & 4 & 2 \\ 0 & x - 3 & 0 \\ -1 & 5 & x \end{vmatrix} = (x - 3) \begin{vmatrix} x - 3 & 2 \\ -1 & x \end{vmatrix}$$
$$= (x - 3)(x^2 - 3x + 2) = (x - 3)(x - 2)(x - 1) = c_A(x).$$

Therefore, the eigenvalues of A are $\lambda_1 = 3, \lambda_2 = 2$, and $\lambda_3 = 1$.

Basic eigenvectors corresponding to $\lambda_1 = 3$: solve $(3I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} 0 & 4 & -2 & 0\\ -1 & 5 & -2 & 0\\ -1 & 5 & -2 & 0 \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} 1 & 0 & -\frac{1}{2} & 0\\ 0 & 1 & -\frac{1}{2} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus $\vec{\mathbf{x}} = \begin{bmatrix} \frac{1}{2}\mathbf{t}\\ \frac{1}{2}\mathbf{t}\\ \mathbf{t} \end{bmatrix} = \mathbf{t} \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ 1 \end{bmatrix}, \mathbf{t} \in \mathbb{R}.$
Choosing $\mathbf{t} = 2$ gives us $\vec{\mathbf{x}}_1 = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$ as a basic eigenvector corresponding to $\lambda_1 = 3.$

Basic eigenvectors corresponding to $\lambda_2 = 2$: solve $(2I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} -1 & 4 & -2 & 0\\ -1 & 4 & -2 & 0\\ -1 & 5 & -3 & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 0 & -2 & 0\\ 0 & 1 & -1 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus $\vec{x} = \begin{bmatrix} 2s\\ s\\ s \end{bmatrix} = s \begin{bmatrix} 2\\ 1\\ 1 \end{bmatrix}$, $s \in \mathbb{R}$.
Choosing $s = 1$ gives us $\vec{x}_2 = \begin{bmatrix} 2\\ 1\\ 1 \end{bmatrix}$ as a basic eigenvector corresponding t
 $\lambda_2 = 2$.

Basic eigenvectors corresponding to $\lambda_3 = 1$: solve $(I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} -2 & 4 & -2 & | & 0 \\ -1 & 3 & -2 & | & 0 \\ -1 & 5 & -4 & | & 0 \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Thus $\vec{x} = \begin{bmatrix} r \\ r \\ r \end{bmatrix} = r \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $r \in \mathbb{R}$.
Choosing $r = 1$ gives us $\vec{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as a basic eigenvector corresponding to $\lambda_3 = 1$.

Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Diagonalization

Linear Dynamical Systems

Geometric Interpretation of Eigenvalues and Eigenvectors

Let A be a 2×2 matrix. Then A can be interpreted as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .

Problem

How does the linear transformation affect the eigenvectors of the matrix?

Definition

Let $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ be a nonzero vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is the set of all scalar multiples of \vec{v} , i.e.,

 $L_{\vec{v}} = \mathbb{R}\vec{v} = \{t\vec{v} \mid t \in \mathbb{R}\}.$

Example (revisited)

 $A = \begin{pmatrix} 4 & -2 \\ -1 & 3 \end{pmatrix}$ has two eigenvalues: $\lambda_1 = 2$ and $\lambda_2 = 5$ with corresponding eigenvectors

$$\vec{\mathbf{v}}_1 = \begin{pmatrix} 1\\1 \end{pmatrix}$$
 and $\vec{\mathbf{v}}_2 = \begin{pmatrix} -1\\1/2 \end{pmatrix}$

Definition

Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector $A\vec{x}$ lies in L whenever \vec{x} lies in L, i.e., $A\vec{x}$ is a scalar multiple of \vec{x} , i.e., $A\vec{x} = \lambda \vec{x}$ for some scalar $\lambda \in \mathbb{R}$, i.e., \vec{x} is an eigenvector of A.

Theorem (A-Invariance)

Let A be a 2×2 matrix and let $\vec{v} \neq 0$ be a vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is A-invariant if and only if \vec{v} is an eigenvector of A.

Problem

Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, i.e., reflection in the line y = mx.

Recall that this is a matrix transformation induced by

$$A = \frac{1}{1 + m^2} \begin{bmatrix} 1 - m^2 & 2m \\ 2m & m^2 - 1 \end{bmatrix}.$$

Find the lines that pass through origin and are A-invariant. Determine corresponding eigenvalues.

Solution

Let $\vec{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$. Then $L_{\vec{x}_1}$ is A-invariant, that is, \vec{x}_1 is an eigenvector. Since the vector won't change, its eigenvalue should be 1. Indeed, one can verify that

$$A\vec{x}_{1} = \frac{1}{1+m^{2}} \begin{bmatrix} 1-m^{2} & 2m \\ 2m & m^{2}-1 \end{bmatrix} \begin{pmatrix} 1 \\ m \end{pmatrix} = \dots = \begin{pmatrix} 1 \\ m \end{pmatrix} = \vec{x}_{1}.$$

Let $\vec{x}_2 = \begin{bmatrix} -m \\ 1 \end{bmatrix}$. Then $L_{\vec{x}_2}$ is A-invariant, that is, \vec{x}_2 is an eigenvector. Since the vector won't change the size, only flip the direction, its eigenvalue should be -1. Indeed, one can verify that

$$A\vec{x}_2 = rac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix} \begin{pmatrix} -m \\ 1 \end{pmatrix} = \dots = \begin{pmatrix} m \\ -1 \end{pmatrix} = -\vec{x}_2.$$

Example

Let θ be a real number, and $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$\mathbf{A} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}.$$

Claim: A has no real eigenvalues unless θ is an integer multiple of π , i.e., $\pm \pi, \pm 2\pi, \pm 3\pi$, etc.

Consequence: a line L in \mathbb{R}^2 is A invariant if and only if θ is an integer multiple of π .

Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Diagonalization

Linear Dynamical Systems

Diagonalization

Denote an $\mathbf{n}\times\mathbf{n}$ diagonal matrix by

$$diag(a_1, a_2, \dots, a_n) = \begin{bmatrix} a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & a_n \end{bmatrix}$$

Recall that if A is an $n \times n$ matrix and P is an invertible $n \times n$ matrix so that $P^{-1}AP$ is diagonal, then P is called a diagonalizing matrix of A, and A is diagonalizable.

► Suppose we have n eigenvalue-eigenvector pairs:

$$A\vec{x}_j = \lambda_j \vec{x}_j\,, \quad j=1,2,\ldots,n$$

▶ Pack the above n columns vectors into a matrix:

$$\begin{bmatrix} A\vec{x}_{1} & | A\vec{x}_{2} & | \cdots & | A\vec{x}_{n} \end{bmatrix} = \begin{bmatrix} \lambda_{1}\vec{x}_{1} & | \lambda_{2}\vec{x}_{2} & | \cdots & | \lambda_{n}\vec{x}_{n} \end{bmatrix}$$
$$\| A \begin{bmatrix} \vec{x}_{1} & | \vec{x}_{2} & | \cdots & | \vec{x}_{n} \end{bmatrix} \|$$
$$\begin{bmatrix} \vec{x}_{1} & | \vec{x}_{2} & | \cdots & | \vec{x}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & \\ & \lambda_{2} & & \\ & & \ddots & & \\ & & & & \lambda_{n} \end{bmatrix}$$

► By denoting:

 $\mathbf{P} = \left[\begin{array}{c|c} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{array} \right] \quad \text{and} \quad \mathbf{D} = \operatorname{diag}\left(\lambda_1, \cdots, \lambda_n\right)$ we see that

AP = PD

► Hence, provided **P** is invertible, we have

 $A = PDP^{-1}$ or equivalently $D = P^{-1}AP$

that is, **A** is diagonalizable.

Theorem (Matrix Diagonalization)

Let A be an $n \times n$ matrix.

1. A is diagonalizable if and only if it has eigenvectors $\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_n$ so that

 $\mathbf{P} = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix}$

is invertible.

2. If P is invertible, then

 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$

where λ_i is the eigenvalue of A corresponding to the eigenvector \vec{x}_i , i.e., $A\vec{x}_i = \lambda_i \vec{x}_i$.

Example

$$\mathbf{A} = \begin{bmatrix} 3 & -4 & 2\\ 1 & -2 & 2\\ 1 & -5 & 5 \end{bmatrix}$$

has eigenvalues and corresponding basic eigenvectors

$$\lambda_1 = 3 \quad \text{and} \quad \vec{\mathbf{x}}_1 = \begin{bmatrix} 1\\1\\2 \end{bmatrix};$$
$$\lambda_2 = 2 \quad \text{and} \quad \vec{\mathbf{x}}_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix};$$
$$\lambda_3 = 1 \quad \text{and} \quad \vec{\mathbf{x}}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Example (continued)

Let
$$P = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \vec{x}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$
. Then P is invertible, so by the above Theorem.

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \operatorname{diag}(3, 2, 1) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Remark

It is not always possible to find n eigenvectors so that P is invertible.

Example

 $\begin{aligned} & \operatorname{Let} \mathbf{A} = \begin{bmatrix} 1 & -2 & 3\\ 2 & 6 & -6\\ 1 & 2 & -1 \end{bmatrix}. \\ & \operatorname{Then} \\ & & \operatorname{c}_{\mathbf{A}}(\mathbf{x}) = \begin{vmatrix} \mathbf{x} - 1 & 2 & -3\\ -2 & \mathbf{x} - 6 & 6\\ -1 & -2 & \mathbf{x} + 1 \end{vmatrix} = \cdots = (\mathbf{x} - 2) \end{aligned}$

A has only one eigenvalue, $\lambda_1 = 2$, with multiplicity three. Sometimes, one writes

$$\lambda_1 = \lambda_2 = \lambda_3 = 2.$$

Example (continued)

To find the 2-eigenvectors of A, solve the system $(2I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ -2 & -4 & 6 & 0 \\ -1 & -2 & 3 & 0 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution in parametric form is

$$\vec{x} = \begin{bmatrix} -2s + 3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \quad s, t \in \mathbb{R}.$$

Since the system has only two basic solutions, there are only two basic eigenvectors, implying that the matrix A is not diagonalizable.

Diagonalize, if possible, the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$.

Solution

$$c_A(x) = \det(xI - A) = \begin{vmatrix} x - 1 & 0 & -1 \\ 0 & x - 1 & 0 \\ 0 & 0 & x + 3 \end{vmatrix} = (x - 1)^2 (x + 3).$$

A has eigenvalues $\lambda_1 = 1$ of multiplicity two; $\lambda_2 = -3$ of multiplicity one.

Eigenvectors for $\lambda_1 = 1$: solve $(I - A)\vec{x} = \vec{0}$.

$$\left[\begin{array}{ccc|c} 0 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 4 & | & 0 \end{array}\right] \rightarrow \left[\begin{array}{ccc|c} 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{array}\right]$$

 $\vec{\mathbf{x}} = \begin{bmatrix} s \\ t \\ 0 \end{bmatrix}, s, t \in \mathbb{R} \text{ so basic eigenvectors corresponding to } \lambda_1 = 1 \text{ are}$ $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Eigenvectors for $\lambda_2 = -3$: solve $(-3I - A)\vec{x} = \vec{0}$.

$$\left[\begin{array}{cccc} -4 & 0 & -1 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \rightarrow \left[\begin{array}{ccccc} 1 & 0 & \frac{1}{4} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

 $\vec{x} = \begin{bmatrix} -\frac{1}{4}t \\ 0 \\ t \end{bmatrix}, t \in \mathbb{R} \text{ so a basic eigenvector corresponding to } \lambda_2 = -3 \text{ is}$

$$\begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix}$$

Let

$$\mathbf{P} = \left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & 0 & 0 \end{array} \right]$$

Then P is invertible, and

$$P^{-1}AP = diag(-3, 1, 1) = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Theorem (Matrix Diagonalization Test)

A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields exactly m basic eigenvectors, i.e., the solution to $(\lambda I - A)\vec{x} = \vec{0}$ has m parameters.

A special case of this is:

Theorem (Distinct Eigenvalues and Diagonalization) An $n \times n$ matrix with distinct eigenvalues is diagonalizable.

Show that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is not diagonalizable.

Solution

First,

$$c_A(x) = \begin{vmatrix} x-1 & -1 & 0 \\ 0 & x-1 & 0 \\ 0 & 0 & x-2 \end{vmatrix} = (x-1)^2(x-2),$$

so A has eigenvalues $\lambda_1 = 1$ of multiplicity two; $\lambda_2 = 2$ (of multiplicity one).

Eigenvectors for $\lambda_1 = 1$: solve $(I - A)\vec{x} = \vec{0}$.

$$\begin{bmatrix} 0 & -1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & -1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

herefore, $\vec{x} = \begin{bmatrix} s \\ 0 \\ 0 \end{bmatrix}$, $s \in \mathbb{R}$.

Since $\lambda_1 = 1$ has multiplicity two, but has only one basic eigenvector, we can conclude that A is NOT diagonalizable.

Why Diagonalization?

Eigenvalues and Eigenvectors

Geometric Interpretation of Eigenvalues and Eigenvectors

Diagonalization

Linear Dynamical Systems

Linear Dynamical Systems

Definition

- A linear dynamical system consists of
 - an $n \times n$ matrix A and an n-vector \vec{v}_0 ;
 - a matrix recursion defining $\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots$ by $\vec{v}_{k+1} = A\vec{v}_k$; i.e.,

$$\begin{array}{rcl} \vec{v}_1 &=& A \vec{v}_0 \\ \vec{v}_2 &=& A \vec{v}_1 = A (A \vec{v}_0) = A^2 \vec{v}_0 \\ \vec{v}_3 &=& A \vec{v}_2 = A (A^2 \vec{v}_0) = A^3 \vec{v}_0 \\ \vdots &\vdots &\vdots \\ \vec{v}_k &=& A^k \vec{v}_0. \end{array}$$

Remark

Linear dynamical systems are used, for example, to model the evolution of populations over time.

If A is diagonalizable, then

$$P^{-1}AP = D = diag(\lambda_1, \lambda_2, \dots, \lambda_n),$$

where $\overline{\lambda_1}, \lambda_2, \ldots, \lambda_n$ are the (not necessarily distinct) eigenvalues of A.

Thus $A = PDP^{-1}$, and $A^k = PD^kP^{-1}$. Therefore,

$$\vec{v}_k = A^k \vec{v}_0 = P D^k P^{-1} \vec{v}_0$$

Consider the linear dynamical system $\vec{v}_{k+1} = A \vec{v}_k$ with

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 0 \\ 3 & -1 \end{array} \right], \quad \text{and} \quad \vec{\mathbf{v}}_0 = \left[\begin{array}{c} 1 \\ -1 \end{array} \right].$$

Find a formula for \vec{v}_k .

Solution

First, $c_A(x) = (x - 2)(x + 1)$, so A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1$, and thus is diagonalizable.

Solve
$$(2I - A)\vec{x} = \vec{0}$$
:

$$\begin{bmatrix} 0 & 0 & | & 0 \\ -3 & 3 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$
has general solution $\vec{x} = \begin{bmatrix} s \\ s \end{bmatrix}$, $s \in \mathbb{R}$, and basic solution $\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Solution (continued) Solve $(-I - A)\vec{x} = \vec{0}$: $\begin{bmatrix} -3 & 0 & 0 \\ -3 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has general solution $\vec{x} = \begin{bmatrix} 0 \\ t \end{bmatrix}$, $t \in \mathbb{R}$, and basic solution $\vec{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Thus, $P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is a diagonalizing matrix for A, $\mathbf{P}^{-1} = \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix}, \text{ and } \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 2 & 0\\ 0 & -1 \end{bmatrix}.$

Therefore,

$$\vec{v}_{k} = A^{k}\vec{v}_{0}$$

$$= PD^{k}P^{-1}\vec{v}_{0}$$

$$= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^{k} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{k} & 0 \\ 0 & (-1)^{k} \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 2^{k} & 0 \\ 2^{k} & (-1)^{k} \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 2^{k} & 0 \\ 2^{k} & (-1)^{k} \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Remark

Often, instead of finding an exact formula for $\vec{v}_k,$ it suffices to estimate \vec{v}_k as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity one: an eigenvalue λ_1 with the property that

 $|\lambda_1| > |\lambda_j|$ for j = 2, 3, ..., n.

Suppose that

$$\vec{\mathbf{v}}_{\mathbf{k}} = \mathrm{PD}^{\mathbf{k}} \mathrm{P}^{-1} \vec{\mathbf{v}}_{0},$$

and assume that A has a dominant eigenvalue, λ_1 , with corresponding basic eigenvector \vec{x}_1 as the first column of P. For convenience, write $P^{-1}\vec{v}_0 = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^T$. Then

$$\begin{split} \vec{v}_{k} &= PD^{k}P^{-1}\vec{v}_{0} \\ &= \begin{bmatrix} \vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} \end{split}$$

$$= b_1 \lambda_1^k \vec{x}_1 + b_2 \lambda_2^k \vec{x}_2 + \dots + b_n \lambda_n^k \vec{x}_n$$

$$= \lambda_1^k \left(b_1 \vec{x}_1 + b_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k \vec{x}_2 + \dots + b_n \left(\frac{\lambda_n}{\lambda_1} \right)^k \vec{x}_n \right)$$

Now, $\left|\frac{\lambda_{i}}{\lambda_{1}}\right| < 1$ for j = 2, 3, ..., n, and thus $\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \to 0$ as $k \to \infty$. Therefore, for large values of k, $\vec{v}_{k} \approx \lambda_{1}^{k} b_{1} \vec{x}_{1}$.

If

$$\mathbf{A} = \begin{bmatrix} 2 & 0\\ 3 & -1 \end{bmatrix}, \quad \text{and} \quad \vec{\mathbf{v}}_0 = \begin{bmatrix} 1\\ -1 \end{bmatrix},$$

estimate \vec{v}_k for large values of k.

Solution

In our previous example, we found that A has eigenvalues 2 and -1. This means that $\lambda_1 = 2$ is a dominant eigenvalue; let $\lambda_2 = -1$.

As before $\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a basic eigenvector for $\lambda_1 = 2$, and $\vec{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basic eigenvector for $\lambda_2 = -1$, giving us

$$\mathbf{P} = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{P}^{-1} = \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix}$$

$$\mathbf{P}^{-1}\vec{\mathbf{v}}_0 = \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1\\ -1 \end{bmatrix} = \begin{bmatrix} 1\\ -2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1\\ \mathbf{b}_2 \end{bmatrix}$$

For large values of k,

$$\vec{v}_k \approx \lambda_1^k b_1 \vec{x}_1 = 2^k (1) \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 2^k\\ 2^k \end{bmatrix}.$$

Remark

Let's compare this to the exact formula for \vec{v}_k that we obtained earlier:

$$\vec{v}_k = \left[\begin{array}{c} 2^k \\ 2^k - 2(-1/2)^k \end{array} \right] \approx \left[\begin{array}{c} 2^k \\ 2^k \end{array} \right].$$